
DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 1 of 22

Dandelion Network Whitepaper

Authors: Paul Chafe
Dr. Atefeh Mashatan
Alexander Munro
Brian Goncalves

Contributors: Duncan Cameron
Jason Xu

Dandelion Networks (dandelionnet.io)

(Dated: 25 Apr, 2022 (v.4))

https://www.cscale.io/

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 2 of 22

TABLE OF CONTENTS

0. EXECUTIVE SUMMARY 3

1. BACKGROUND 3

1.1. Problem Definition 4
2. DANDELION NETWORK 5

3. ARCHITECTURE 6

3.1. Definitions 6
3.2. Data structure 7
3.3. State Machine 8
3.4. Node States 8
3.5. Shard States 9

4. CONSENSUS 9

4.1. Client-Leader 9
5. TRANSACTION 10

5.1. Asynchronous Clear-and-Settle 10
5.2. Complete transaction sequence 11
5.3. Abort sequence 12
5.4. Update Sequence 12
5.5. Byzantine Clients and Inconsistent States 13
5.6. Performance 13
5.7. Performance Enhancement 14

 Transaction Stacking. 14

 Transaction Delegation 14

 Client Configuration 15

6. SMART CONTRACTS 15

7. PROVABLE SECURITY 16

8. CONCLUSION 16

9. ACKNOWLEDGEMENTS 16

10. BIBLIOGRAPHY 16

Annex A: Reference Algorithms 19

Annex B: On the Security of the Dandelion Protocol 22

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 3 of 22

“Α blockchain that claims to have solved the [Buterin] Trilemma of secure, scalable and
decentralized, has either bent the laws of physics... or it has discovered a breakthrough
method that solves the major blockchain scalability problems that have stumped top
mathematicians and computer scientists for the past decade.”

- Georgios Konstantopoulos (Konstantopoulos, 2018)

0. EXECUTIVE SUMMARY

Open blockchain networks enable global peer-to-peer transactions through the property
of distributed trust (Anjum et al., 2017; Bellini et al., 2020; Karame & Capkun, 2018). Most
successful blockchain models rely on either raw computing power (as in Proof of Work, PoW) or
of exogenous currency (as in Proof of Stake, PoS) to commit network nodes to honest consensus.
However, the accruing reinvestment cycle and economies-of-scale have driven centralization of
node ownership, undermining the distributed trust property. In PoW, this has manifested in large
scale mining companies making infrastructure investments on the scale of tens or hundreds of
millions of dollars, excluding small operators from the network. In PoS, the store of value
transfers directly from an origin currency into the staked blockchain without the need for physical
infrastructure, which enables even faster centralization. A related problem is that the blockchain
paradigm is inherently serial, which means scaling requires awkward work-arounds. These
realities both increase costs and limit applications. We describe Dandelion, an alternative,
centralization-resistant network, demonstrating long-term security, rapid finalization, and
unrestricted scalability. Development to date confirms that this network can dramatically reduce
gas (operating costs), finalization time, and attack vulnerabilities, while allowing a fully scalable
transaction system and a wide variety of Decentralized Finance (DeFi) systems built on top of
them.

1. BACKGROUND

Sufficiently decentralized networks have the property of distributed trust (Beck et al.,
2016; Dorri et al., 2017; Veloso et al., 2019). This means the network may be trusted to execute
transactions honestly, even if no individual on it may be. This automated trust disintermediates
traditional third-party trust-providers (e.g., banks, markets, etc.), and can operate considerably
more efficiently. Bitcoin and subsequent networks like Ethereum have demonstrated global
demand for this service model.

Traditionally, these networks have operated under a parallel computing model which

equilibrated a trade-off between three core attributes: (i) the security and integrity of the network,
(ii) its intended decentralization and trust distribution, and (iii) its overall scalability. This
prompted designs in which a “choose-2” trade-off over a primary attribute evolved. First
expressed by the founder and designer of the Ethereum network, Vitalik Buterin, this has become
the eponymous Buterin Trilemma (Altarawneh et al., 2020).
The use of the PoW method to underpin honest consensus was developed in the Bitcoin Network
(Nakamoto, 2008), which operates a computational race to find the cryptographic magic numbers
required to advance the blockchain. Solving for these numbers requires substantial computing
power demanding a proportionally large amount of electrical power; in effect, Bitcoin
encapsulates this consumed electrical power in a verifiable token. This is akin to the energy
encapsulation (as labor, fuel, and materials) in gold mining and refining, which also results in a
verifiable token. This serves as the basis for the network’s distributed trust property and is an
innovation in econophysics as much as in computer science.

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 4 of 22

Unfortunately, the PoW model is
intrinsically inefficient. The central Bank of
Canada found that operating the Canadian
economy on Bitcoin would require 26.3
times the entire power consumption of the
country (Chapman & Wilkins, 2019) and
currently that network consumes more
electrical power than industrialized Sweden
(Rauchs et al., 2021). Although this ratio
may improve, research into energy
consumption as a “Granger-cause” for GDP
growth suggests that the available useful
energy (in quality-indexed British thermal
units) to such an economy would need to
expand infeasibly to satisfy the utility
promised by such PoW models (Cleveland
et al., 2000). One may draw the clear
conclusion that Bitcoin cannot plausibly
underpin a majority of economic
transactions and may continue to prove
problematic in other derivative PoW
networks, including Ethereum. PoS systems (Buterin & Griffith, 2017; Zamfir et al.) displace this
physical investment with economic investment. Given that the investment is indirect, PoS
appears more efficient, but purchasing stake substitutes primary electrical power for derivative
economic power. Under current economic theory (ref. Cleveland et al., 2000), economic power
follows available energy inputs into that economy. Thus, PoS’s extensible utility and economic
value still require at least proportional energy to maintain security properties as demand rises.

This energy problem is a serious concern, but more important is the second-order effect

of these costs, which provide economies of scale to rent-seeking network participants through
cost-reduction methods (e.g., larger mining operations) and revenue-maximization (as mining
pools) (Lin William Cong et al., 2019). These have driven consolidation of network ownership,
which is an expected economic process. However, in the case of open blockchain networks,
centralization erodes the distributed trust property and thereby reduces the network’s intended
value (Swanson, 2014). Currently, just three major mining pools control over 50% of Ethereum,
and just four control over 50% of Bitcoin; indeed, “51% attacks” have already been successful
against smaller blockchains such as Ethereum Classic (Jenkinson, 2019) and Bitcoin Gold.
Without the physical constraint of building mining infrastructure, PoS networks are likely to
centralize even faster. If open blockchains are to be universally accepted as an economic medium,
then not only must node-ownership be widely distributed, it must remain so in the face of
centralizing forces (see Figure 1).

To prevent this, node-owners must be structurally prevented from collusive coalitions; but
even absent collusion, node operators in PoW and PoS systems have available to them
mechanisms to maximize their private profit at the expense of network clients (Eskandari et al.,
2019).

1.1. Problem Definition

In order to provide sustainable distributed trust, a network must resolve the Buterin
Trilemma (Figure 2), simultaneously providing:

Figure 1: Qualitative feedback of blockchain’s current
state of art.

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 5 of 22

(i) Decentralization —Network membership must be available to any node of computing
power, O(c)1;

(ii) Scalability —The entire network must have computing power O(n)>O(c), where n equals
network membership and O(n) is its computing power, which suggests an ability to process
transactions in parallel; and,

(iii) Security — Any malicious actor (as
Adversary) must have computational power
>O(n) to compromise the integrity of the
network.

In operation, the network must be
provably secure and demonstrably
decentralized in order to underpin
transactions effectively, meaning scalability
is the necessary sacrifice (Monte et al.,
2020). Moreover, the decentralization
property must hold against the pressure of
economies-of-scale and other external
forces. This is demonstrably not true in
current systems.

2. DANDELION NETWORK

We propose the Dandelion Network which can solve the Trilemma under a model which presumes
its nodes and clients are (i) economically rational and (ii) exist in the real world, with the
assumption set:

(i) Senders expect an external gain-in-trade and thus seek to clear transactions they have
initiated.

(ii) Receivers expect to become Senders in the future (undefined) and thus seek to settle
inbound transactions and to deposit proceeds into their accounts.

(iii) Nodes are a special subset of Receivers and are rewarded (incentivized) for processing
transactions. Reward for correct and compliant processing must exceed the potential external
reward for any other behavior within their choice set.

To achieve this, the Dandelion transaction network implements three key improvements to
conventional blockchain technologies:

(i) Architecture— The Dandelion Root (Realtime Optimized Order Transactions) blocklattice
is the core data model. Blockchains are inherently serial structures, whereas the blockattice is
inherently parallel. This allows parallel processing of both transactions and smart contracts,
increasing efficiency and throughput.

(ii) Consensus—the Dandelion Leaf consensus mechanism. This patented protocol offloads
bandwidth requirements from nodes to clients, reducing communications complexity at the node

1 In computer science, “Big-O” notation is typically used to relate functions tending toward limits, infinities, or asymptotes,
such as computing power, storage constraints, network growth, algorithm run-time, etc. Here, we describe the limiting
relationship amongst the Trilemma’s determinants.

Decentralization

ScalabilitySecurity

Idealized Open
Transaction Network

Figure 2: The “choose-2” trade-off per the Buterin
Trilemma.

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 6 of 22

to O(1) from (typically) O(n^2). This in turn enables tens of thousands of peer-nodes the
decentralization and security parameters of the network.

(iii) Asynchronicity—The Dandelion Stem asynchronous clear/settle paradigm decouples the
clearing and settlement mechanisms, and allows cross-shard transactions. This allows the
network to scale without limit.

These technologies are mutually enabling. Collectively, they achieve clear-and-settle of
transactions in less than one second at unmatched high network throughput and unrestricted
scaling. This makes the network as efficient as is physically possible for a given level of
communications/computation technology, and a chosen level of distributed trust. This efficiency
translates directly into transaction costs and gas fees several orders of magnitude lower than are
possible on either competing blockchain networks or conventional transaction rails.

3. ARCHITECTURE

3.1. Definitions

(i) A clear is an operation in which an amount is debited from an account, creating a new
balance.

(ii) A settle is an operation in which an amount is credited to an account, creating a new
balance.

(iii) A transaction is a complementarily matched pair of exactly one clear and one settle
operation, occurring asynchronously.

(iv) A fee is an amount charged for a transaction. Fees are burned (see Figure 3) by including
them in the debited amount in clear operations but not in the credited amount of the matching
settle operation.

(v) A chain or account-chain is a set of hash-linked balances, resulting from successive clear
and/or settle operations. Every transaction links to two account-chains.

(vi) A pennyjar is an unordered buffer associated with an account-chain which stores
incoming transactions prior to a settle. The analogy is a tip jar which stores an unordered stream
of incoming donations until the receiver can count and order them.

(vii) Pennies are incoming, unsettled transactions stored in the pennyjar.

(viii) A pennyroll is a collated and serialized list of pennies.

(ix) An account collectively describes the designated chain with its associated pennyjar and
supporting metadata, identified by the public key of a public-key/secret-key keypair pair. The
public-key is used to confirm that transactions on the account are valid by proving they are signed
by the associated secret-key.

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 7 of 22

(x) Tokens are the Dandelion network’s fungible currency as exchanged between accounts
through transactions.2

(xi) A client is a network-connectable device which holds the private-key to an account and
executing the processes required to clear and to settle transactions.

(xii) A node is a computer and which earns tokens through the ongoing maintenance of a
dynamic subset of accounts and the verifying/authorizing of transactions involving its designated
accounts.

(xiii) Minting is the process by which nodes are rewarded tokens for execution of their activities.

(xiv) A shard is a subset of nodes across which all maintain and cross-verify the same subset of
accounts. The network can include an arbitrary number of shards.

(xv) The network is the full set of all shards.

3.2. Data structure

The Dandelion network’s basic structure is not a
blockchain, but a blocklattice. This differs from
existing blockchain protocols in several
important respects.

(i) There are many chains. Every account
maintains its own account-linked transaction-
chain.

(ii) There are no blocks. Each account-level
transaction forms its own link in its paired
transaction-chain.

(iii) Transactions are discretely matched and
paired as a distributed ledger (DL). For every
outgoing (cleared) transaction sent from an
account-chain, there must exist a correlating
incoming transaction (settled) on another
account-chain. This is analogous to double-
entry book-keeping.

(iv) Chains are updated through an
asynchronous clear/settle protocol.

This structure produces several important advantages over conventional blockchains:

2 Internally, the Dandelion network’s tokens are called Pennies; but to avoid confusion, any use of Pennies in this
document strictly refers to the backlog of incoming, unsettled transactions.

Figure 3: Dandelion TLDAG structure with state
advances for a match-paired transaction, across

two separate transactions.

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 8 of 22

(i) Each account has its own chain, thus finalization time is limited only by available
bandwidth to the client’s device;

(ii) Transaction order is optimized by the client (Dandelion Root).

(iii) Clearing and settling are asynchronous which allows the network to scale without limit
(Dandelion Stem); and,

(iv) Transactions are processed individually and in parallel, and therefore there is no
opportunity for in-block front-running, empty-block mining, or Miner Extracted Value.

3.3. State Machine

Dandelion advances state using a simple state machine to implement a two-phase commit
process (see Figure 4). Every node maintains a version of this state machine for every account
chain in its subset of the TLDAG. Perforated lines indicate state transitions requiring messages
signed by the client’s private-key. Solid lines indicate state transitions requiring the aggregated
signatures of a ⅔ majority of the nodes of the account-chain’s given shard.3

3.4. Node States

Finalized. The finalized state (State
0, S0) is the normal “resting” state of
the state machine in which all
transactions have been processed up
to the current transaction number
(Txi). In this state, the account
balance is available, and the client
may: (i) precommit to a transaction;
(ii) move to the preabort state if the
client wants to abort a transaction
which has been precommitted on
other nodes; or (iii) advance the
node to any finalized state (States 1a,
1u, or 1c) upon receiving the collated
verifications confirming that the
majority of its shard’s nodes is
advancing or has advanced its
aggregate state-machines to such
finalized state.

Lagging. When a node’s account-chain for a given client is not current with the majority of nodes
on its shard, it is lagging. Here, a majority of nodes has already advanced through the state
machine to finalize a subsequent transaction, and the lagging node may be updated (State 1u)
through an authenticated update or abort request.

Precommit. The precommit state indicates that the client has requested a transaction of a node
and the node has validated the transaction; but the node has not yet authenticated that the client
has duplicated the request across a majority of nodes on its shard. An account on a node in
precommit is locked to new transactions. It may be moved to a committed state (State 1c) through
an authenticated commit request; the same holds for achieving a subsequent updated state (State
1u) through an authenticated update request (if it is lagging on one or more finalizations), or to a

3 In balancing the tradeoff between liveliness and safety when contending with byzantine failures, as a
deterministic system, Dandelion uses 3f+1 which derives to the “>2⁄3 majority” consensus threshold.

Figure 4: Dandelion's general state machine advances.

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 9 of 22

subsequent aborted state through a preabort request from the client, followed by an authenticated
abort request (State 1a).

Preabort. The preabort state indicates that the client is cancelling an already initiated
transaction. As with the precommit state, the preabort state is locked to new transactions, but
may be updated with an authenticated update request if it is lagging (advance to State 1u). An
authenticated abort request moves the state machine to a finalized state in which the transaction
number advances but the balance is unchanged (State 1a).

3.5. Shard States

Shard state. Refers to the aggregated state of all node states for a given account. A client may not
be able to contact some or all of a shard’s nodes at any given time. Thus, different nodes may be
in different states with respect to the client’s account. Shards can be in one of two shard states:

Consistent. An account is in a consistent state when a simple-majority of the nodes in its shard
are either in the same state or can be moved to the same state by completing a single state
transition; or,

Inconsistent. An account is in an inconsistent state when it is not in a consistent state. An
inconsistent state may always be brought to a consistent state by transiting the abort process.
Inconsistent states are not expected in normal operations but may arise through Byzantine failure.

4. CONSENSUS

4.1. Client-Leader

Two-phase commit is a form of
leader-based consensus system, in which a
single machine coordinates the advance of
the state machine across all nodes.
Conventional leader-based systems suffer
three flaws. First, the leader is in a
privileged position to determine unilaterally
the unique order of transactions. This is a
significant problem for markets in which
either the transaction order has priority
consequence (e.g., time-fluctuating prices),
or where the leader may wish to prevent
certain transactions from proceeding at all
(i.e., transaction censorship). Second, the
leader represents a single point of failure. A
denial-of-service attack need only target the
network’s leader, a task orders of magnitude
easier than attacking a majority of nodes in
any large network. Most leader-based
models have crash-recovery/leader-election
systems to replace a failed leader rapidly, but a malicious node will be able to identify the new
leader immediately as soon as the recovery process completes, and so can redirect the attack to
disrupt the network continuously. Finally, the leader’s communications load rises quadratically
(O(n2)) with the size of the network, which strictly limits both the number of nodes and the total
volume of processable transactions.

Dandelion’s Leaf mechanism (see Figure 5) resolves these problems using the patented
client-leader paradigm. With the Client’s account replicated across all nodes of its associated

Figure 5: Client-Leader overview

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 10 of 22

shard, the client becomes the leader for its own account-chain and is responsible for advancing
the state machine across its shard. This offers several benefits. First, nodes do not and need not
communicate with each other. All communications go through the client. This offloads the
network’s quadratic communications (O(n2)) to the client, while the nodes’ communication load
rises only as O(n) with node count, enabling a very high node count and thus a very high level of
distributed trust. By definition, clients process fewer transactions than the network broadly; thus,
a quadratic rise in communication load at the client does not limit total network throughput.
Further, each client is free to allocate resources to the system as best befits its needs, which
enables many different client configurations, including direct clear-settle, gateway access, single-
device and distributed-client configurations. Finally, short of complete network shutdown,
leader-targeted denial-of-service attacks can only disrupt transactions on individual accounts and
only until the client identifies the attack and connects via an alternative path to its nodes.

The quadratic rise in communication load can be further improved in Dandelion’s case,
because the load consists of n signatures which must be received from and then retransmitted to
n nodes. However an aggregable signature scheme such as Boneh-Lynn-Shachem (BLS) allows
the aggregation of multiple signatures into a single signature data block. In this case, the
transmission load, at the client, rises only as O(n). At the node, the communications load is static
(ie, O(1)) regardless of the number of nodes.

5. TRANSACTION

5.1. Asynchronous
Clear-and-Settle

Dandelion Stem
prevents double-spending by
locking the sender’s state
machine to new transactions
whilst it is in a transitional
clearing state, thus allowing
only one outbound transaction
at a time. However, the
receiver’s account-chain may
receive any number of inbound
transactions at once, in any
order, from different subsets of
nodes in different shards.
Dandelion resolves this
complexity by associating each
client account with an
unordered data buffer (i.e.,
“pennyjar”) which receives and
stores incoming transactions
for settlement (Figure 6). Upon
finalization of a clear on the
corresponding sender’s
account, the resulting penny is transferred into the receiver’s pennyjar. Under Dandelion’s Client-
Leader protocol, onus then lies with the receiver client to settle transactions onto its own account-
chain.

This offers the following advantages:

Figure 6: Dandelion's asynchronous clear-settle mechanism.

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 11 of 22

(i) Sender and receiver do not have to be connected at the same time to execute the
transaction.

(ii) Transactions can clear and settle across shards, allowing the network to scale unrestricted.

(iii) Senders and receivers are able to negotiate and to confirm the transaction out-of-band,
using any digital or physical channel as may befit the application layer (e.g., NFC, QR code, URL,
post mail, etc.).

Figure 7: Dandelion generalized full transaction sequence.

5.2. Complete transaction sequence

Figure 7 illustrates a complete Client-Leader cross-shard transaction between sender
(Alice) and receiver (Bob). Figure 7 is generalized and various permutations and configurations
are readily constructed at the application layer. Importantly, under Client-Leader, clients assume
responsibility for finalization. As clients will not initiate transactions which they do not intend,
normal transactions will follow this generalized sequence. Reference algorithms defining sending
(1–Send), request validations (2–Collect States), updating receiver account (3–Receive), and
finally receiving (4–Reply), are provided in Annex A: Reference Algorithms.

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 12 of 22

5.3. Abort sequence

If a client decides not to complete a transaction which has not been precommitted on >⅔
of nodes (e.g., in the event of a disconnection or interruption), the client may choose to abort the
transaction. In this case, any precommit nodes may be moved to the preabort state. On collecting
>⅔ of signatures for the preabort state, the client may then move the transaction to the aborted
state. The previously committed state is abandoned, and its transactions’ pennies withdrawn
from the recipient pennyjar.

Throughout the abort process, it is impossible to clear any of the partially completed
transactions given that >⅔ of nodes are never committed to any one of them; and it is impossible
to settle any of the partially completed transactions, as none has been cleared. Per our
Assumption-1 (Senders only initiate to obtain external gain-in-trade), the preceding behavior is
not economically rational and thus initiated transactions will not normally be aborted.

Figure 8: Inconsistent states and the Abort sequence for resolution.

Figure 8 shows the state progression through the abort state for a network in an inconsistent
state. Note, the state number is advanced through the abort sequence, even though the balance
is reverted.

5.4. Update Sequence

Nodes which are offline when a transaction is finalized will become lagging. To account
for this, the state machine allows clients to update lagging nodes with verifications as signed by a
>⅔ majority of nodes in the current finalized state. On receiving an update request, the nodes
return the range of transaction IDs required to move the state machine from the furthest lagging
state to the current state. The client then broadcasts these verifications to the lagging nodes. On
receiving >⅔ verifications, lagging nodes can completely update the client’s chain for this
transaction range without transiting the precommit-commit process for each link in the chain.

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 13 of 22

5.5. Byzantine Clients and Inconsistent States

A consequence of the client leader model is that clients are completely responsible for
maintaining the state of their own account chain. While it is not possible for a byzantine client to
finalize more than one transaction at a time, it is possible for byzantine client to put their chain in
an inconsistent state. In this case the client initiates a transaction and obtains verifications from
>⅔ of the nodes, but only commits the transaction for <⅔ of nodes; it may then initiate a second
transaction, maximally gaining the remaining minority verifications (<⅓), which cannot be used
to finalize the second transaction on any of the nodes. The client can initiate any number of
transactions on a minority (<⅓) of nodes, but because the client cannot collect a ⅔ majority of
verifications for such transactions, none can finalize; rather, only the first transaction can finalize,
for which >⅔ have committed.

When the byzantine failure of the responsible client is cleared, the chain can be returned
to a consistent state by moving the precommitted nodes through the abort cycle. Through this
process no transaction can be cleared. The account chain is advanced to the next state, with
balance and transaction status equal to the previous state.

5.6. Performance

Unlike conventional blockchains, Dandelion does not have an inherent transaction rate.

Rather, transaction performance parameters are governed by the number of signatures per
second that can be processed and transmitted. As these figures will vary across both nodes and
clients, performance will also vary both between transactions and over network life. Upgrade
incentives built into the tokenomics will provide for continuous improvement as the underlying
technology advances. Note that total network throughput is governed by the performance of the
median node; as transactions require only strictly >⅔ consensus, clients may freely ignore slower
verifications for finalization and update slower nodes later.

With this in mind, performance under present day realworld conditions can be estimated.
At the node, and for the network as-a-whole, the figure-of-merit for performance is transactions
per second. Using BLS aggregable signatures, signature verification costs rises linearly with
network size (O(n)), while transmission costs scale with total throughput. This implies that
capacity for both should be matched for optimal efficiency (ie, bandwidth and processing power
should scale together as the network becomes more distributed, and the transaction demand
rises). Nodes are rewarded for participating in consensus and so are motivated to improve their
performance to ensure their inclusion in settlement rounds. Figure 9 presents the estimated
transaction throughput by network size and
data-rate. At a shard size of 10000 nodes,
with server-grade hardware and Gbit
connectivity and matching processor power,
the network can process more than 250,000
transactions per second, per shard. For
comparison, the VISA network averages about
1,700 transactions per second (Li, 2019) and
has a peak capacity of at 54,000 transactions
per second. 10Gb is commonly available for
wired/fibre connections around the planet.

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 14 of 22

At the client, the figure-of-merit is
finalization time. For this metric, the
verification load at the client is fixed and light,
but transmission demand rises as the linearly
with network size. This is a concern as simple
transactions between locally connected mobile
devices are a major use case and. Under current
technology, mobile devices have best-possible
data-rate of approximately 1 Gbit/s on high
quality 5G. Figure 10 presents the finalization
time as a function of network size. From this
analysis, it can be seen that good 5G connectivity
allows direct peer-to-peer transaction sub-second
finalization on a network of 16000 nodes. For a
global network, this means total transaction time
will be dominated by the maximum normal-
condition round trip time to the most distant
node, which can be taken to be a maximum of 1.5s
(three round trips with 250ms trans-globe latency). However, even on a low quality 5G
connection or older generation connections, transactions are finalized within seconds. For clients
with slower connections, Dandelion’s structure allows the use of gateways: These are systems
configured to receive verifications on a low-speed channel once, and then rebroadcast those to the
shard over a high bandwidth channel. For example, a client point-of-sale terminal configured for
transaction settling over a fiber-link may provide a counterparty client on a mobile device with a
high-speed connection to clear the transaction without any use of wireless connectivity.
Performance enhancements beyond the simple peer-to-peer single-transaction model are
discussed below.

5.7. Performance Enhancement

Beyond these raw performance metrics, the asynchronous client-leader paradigm enables
several special case situations where performance can be increased.

 Transaction Stacking.

The sequence of signature exchanges as detailed above is required to complete a single

transaction. However it is possible to stack any number of subtransactions into the same
signature exchange. On the sending client side, the client may package any number of transaction,
with different amounts and recipients into the same signature exchange. The nodes simply
confirm that the sum of all the subtransactions is within the balance of the sending client. The
state machine is advanced normally, and on finalization, each subtransaction is sent to its
respective receiving client. On the receiving client side, the entire contents of the penny jar can
be downloaded by the receiving client, a single unique order of inbound transactions for which a
majority of signatures has been received is established, and that ordering is sent back and finalized
across all the nodes. This is useful for high-volume applications, such as exchanges and payment
systems, where transactions can be efficiently batched in short intervals.

 Transaction Delegation

Both the clear and settle halves of a transaction are authorized by the cryptographic

signature of the respective client. In general, the network is agnostic as to the device that

Figure 9: Estimated transactions per second, by network
size and median bandwidth.

Figure 10: Finalization time by network size and
bandwidth.

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 15 of 22

actually carries out the signature exchange sequence. In a use-case such as tap-and-pay, this
allows a performance increase based on the fact that the receiving clients can generally be
expected to have much higher band-width and processing power available than the sending
client. In this case, the sending client may cryptographically sign the initial transaction request,
and then send it locally to the receiving client. The receiving client can then finalize both the
clear and settle halves of the transaction using its higher bandwidth.

The reverse is also true, and this can be combined with transaction stacking. A receiving
client may download and order its entire penny jar, using transaction stacking, and then
delegate the sending client (or generally any device) to perform the required transmission
rounds. This technique will avoid congestion issues in high usage/high density areas where
many clients use shared bandwidth, such as wifi and cellular data.

 Client Configuration

A client is any device which holds a secret key associated with an account, together with

the required software to carry out the Dandelion Protocol. A simple peer to peer model is two
smartphones, each configured as above, which connect over local NFC to exchange transaction
data, and the perform the clear and settle halves of the transaction with the nodes of the
network through cellular connectivity. However the ability to stack transactions and delegate
finalization allow many other configurations. A smart-card with NFC and on-board processing
can authorize a transaction with an on-board secret key, and then delegate finalization to a
independent point-of-sale terminal with a hardwired connection. A financial institution
datacenter may hold many accounts internally, and stack transactions as required to serve its
customers, before batching them to a finalization system that communicates with the network.
A retail organization can have many point-of-sale terminals send transaction data over a virtual
private network to a central finalizing system, while simultaneously pushing the data into their
internal databases, which can then generate private intelligence in realtime. The flexibility of
the client-leader configuration allows specific users to customize their performance and
operating characteristics to fit their particular use case.

6. SMART CONTRACTS

Smart contracts are independent pieces of code running on a network with the property of

distributed trust. As long as the distributed trust property holds and the network continues to
operate, a smart contract will function according to its logic. Smart contracts have transactions as
inputs and outputs, and the network charges fees for their execution. As a fully parallel,
asynchronous network, the Dandelion network will run smart contracts with the same efficiency
benefits it brings to simple transactions. Specific characteristics of the Dandelion Smart Contract
platform are:

(i) Dataflow operation. As Dandelion is inherently parallel, it is possible to abandon the
control-flow paradigm and use the dataflow model instead. This allows fully parallel smart
contract operation without the risk of deadlocks or livelocks. Parallel operation represents a
considerable efficiency gain over conventional blockchain systems.

(ii) Fair ordering. In many cases the order of transaction processing is important (eg,
differing orders of buy or sell option execution can have differing financial outcomes). However
Dandelion’s smart contract design fairly orders incoming transactions and disambiguates

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 16 of 22

“simultaneous” submissions fairly, and without the ability for clients or nodes to predict in
advance which

(iii) No latency arbitrage. Latency arbitrage depends on physical proximity to the exchange
floor in order to receive information and execute operations in a time cycle shorter than
operations farther from the floor can manage due to intrinsic communications delays. Overall
network operation combined with fair ordering renders this impossible on the Dandelion
Network.

7. PROVABLE SECURITY

Dandelion’s security has been proven mathematically in On the Security of the Dandelion
Protocol (Goncalves and Mashatan 2022) published in Mathematics 2022, (Recent Advances in
Security, Privacy, and Applied Cryptography) 10(7), 1054; - 25 Mar 2022 The full analysis is
included as Annex B to this document.

8. CONCLUSION

The Dandelion network provides a resolution to the Buterin trilemma by: (i) employing a
Transaction Linked Directed Acyclic Graph rather than a traditional blockchain, (ii) empowering
a Client-Leader consensus mechanism which both retains sufficiency of trust properties while
offloading the bandwidth demands onto the participating clients, and (iii) decoupling the clearing
and settling of transactions such that asynchronous requests and approvals are intrinsically
managed. Moreover, these characteristics are built (iv) using a post-quantum cryptographic
model. Collectively, Dandelion enables a transaction method with real-time finalization and with
highly scalable transaction throughput.

Dandelion will provide a superior mobile P2P network for transacting application layers
for which existing distributed application operators may dramatically offset the risks and costs
posed by finalization fees (gas costs), network seizure and centralization (consensus risk), and
frontrunning and collusive activities (transaction vulnerabilities).

9. ACKNOWLEDGEMENTS

The authors would like to acknowledge the ongoing support of Dr. Peter Gregson, Dalhousie
University, without whom this project would never have been possible.

10. BIBLIOGRAPHY

Altarawneh, A., Herschberg, T., Medury, S., Kandah, F., & Skjellum, A. (2020). Buterin’s
Scalability Trilemma viewed through a State-change-based Classification for Common Consensus
Algorithms. 2020 10th Annual Computing and Communication Workshop and Conference
(CCWC), 0727–0736. https://doi.org/10.1109/CCWC47524.2020.9031204

Anjum, A., Sporny, M., & Sill, A. (2017). Blockchain Standards for Compliance and Trust. IEEE
Cloud Computing, 4(4), 84–90. https://doi.org/10.1109/MCC.2017.3791019

Beck, R., Czepluch, J. S., Lollike, N., & Malone, S. (2016). Blockchain – The Gateway to Trust-
Free Cryptographic Transactions. 15.

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 17 of 22

Bellini, E., Iraqi, Y., & Damiani, E. (2020). Blockchain-Based Distributed Trust and Reputation
Management Systems: A Survey. IEEE Access, 8, 21127–21151.
https://doi.org/10.1109/ACCESS.2020.2969820

Buterin, V., & Griffith, V. (2017). Casper the Friendly Finality Gadget (p. 10). Ethereum
Foundation. https://allquantor.at/blockchainbib/pdf/buterin2017casper.pdf

Chapman, J., & Wilkins, C. A. (2019). Crypto ‘Money’: Perspective of a Couple of Canadian
Central Bankers. 33.

Cleveland, C. J., Kaufmann, R. K., & Stern, D. I. (2000). Aggregation and the role of energy in
the economy. Ecological Economics, 32(2), 301–317. https://doi.org/10.1016/S0921-
8009(99)00113-5

Dorri, A., Kanhere, S. S., & Jurdak, R. (2017). Towards an Optimized BlockChain for IoT.
Proceedings of the Second International Conference on Internet-of-Things Design and
Implementation, 173–178. https://doi.org/10.1145/3054977.3055003

Easttom, W. (2021). Modern Cryptography: Applied Mathematics for Encryption and
Information Security.

Eskandari, S., Moosavi, S., & Clark, J. (2019). SoK: Transparent Dishonesty: front-running
attacks on Blockchain. ArXiv:1902.05164 [Cs]. http://arxiv.org/abs/1902.05164

Goncalves, B., & Mashatan, A. (2022). On the Security of Dandelion. -.

Jenkinson, G. (2019, January 10). Ethereum Classic 51% Attack—The Reality of Proof-of-Work.
CoinTelegraph. https://cointelegraph.com/news/ethereum-classic-51-attack-the-reality-of-
proof-of-work

Karame, G., & Capkun, S. (2018). Blockchain Security and Privacy. IEEE Security & Privacy,
16(4), 11–12. https://doi.org/10.1109/MSP.2018.3111241

Konstantopoulos, G. (2018, January 23). Scalability Tradeoffs: Why “The Ethereum Killer”
Hasn’t Arrived Yet. https://medium.com/loom-network/scalability-tradeoffs-why-the-
ethereum-killer-hasnt-arrived-yet-8f60a88e46c0

Li, K. (2019, January 30). The Blockchain Scalability Problem & the Race for Visa-Like
Transaction Speed. https://towardsdatascience.com/the-blockchain-scalability-problem-the-
race-for-visa-like-transaction-speed-5cce48f9d44

Lin William Cong, He, Z., & Li, J. (2019). (NBER Working Paper Series, p. 55). National Bureau
of Economic Research.
https://www.nber.org/system/files/working_papers/w25592/w25592.pdf

Mavroeidis, V., Vishi, K., D., M., & Jøsang, A. (2018). The Impact of Quantum Computing on
Present Cryptography. International Journal of Advanced Computer Science and Applications,
9(3). https://doi.org/10.14569/IJACSA.2018.090354

Monte, G. D., Pennino, D., & Pizzonia, M. (2020). Scaling Blockchains without Giving up
Decentralization and Security: A Solution to the Blockchain Scalability Trilemma. Proceedings of
the 3rd Workshop on Cryptocurrencies and Blockchains for Distributed Systems, 71–76.
https://doi.org/10.1145/3410699.3413800

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. 9.

Rauchs, M., Blandin, A., Dek, A., & Wu, Y. (2021, May 6). University of Cambridge, Judge School
of Business, Centre for Alternative Finance: Cambridge Bitcoin Electricity Consumption Index—
Country Ranking. University of Cambridge - Judge School of Business, Centre for Alternative

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 18 of 22

Finance: Cambridge Bitcoin Electricity Consumption Index.
https://cbeci.org/cbeci/comparisons

Swanson, T. (2014). Bitcoin Hurdles: The Public Goods Costs of Securing a Decentralized
Seigniorage Network which Incentivizes Alternatives and Centralization.
http://www.ofnumbers.com/wp-content/uploads/2014/04/Bitcoins-Public-Goods-hurdles.pdf

Veloso, B., Leal, F., Malheiro, B., & Moreira, F. (2019). Distributed Trust & Reputation Models
using Blockchain Technologies for Tourism Crowdsourcing Platforms. Procedia Computer
Science, 160, 457–460. https://doi.org/10.1016/j.procs.2019.11.065

Vijayalakshmi, P. R., & Raja, K. B. (2012). Performance analysis of RSA and ECC in identity-
based authenticated new multiparty key agreement protocol. 2012 International Conference on
Computing, Communication and Applications, 1–5.
https://doi.org/10.1109/ICCCA.2012.6179168

Zamfir, V., Rush, N., Asgaonkar, A., & Piliouras, G. (n.d.). Introducing the “Minimal CBC Casper”
Family of Consensus Protocols. 29.

Zinsmeister, N., & Robinson, D. (n.d.). Hayden Adams hayden@uniswap.org. 10.

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 19 of 22

ANNEX A: REFERENCE ALGORITHMS

Algorithm 1: SENDTX (SenderAccount, TxNumber, DestAccount, Amount)

Tx→ (SenderAccount ←SenderAccount, TxNumber ←TxNumber, DestAccount
←DestAccount,
 Amount ←Amount)
Message→ (Tx ←Tx, Type ←SENDTX σ ←σ(Message, SenderAccount→ KS)
(Ni , Nf) ←SenderAccount→ Shard (Ni , Nf)
for n ∈ (Ni …Nf) do
 TRANSMIT (n, Message)
Message→ Verifications ←COLLECTSTATE(SenderAccount)
if #{v ∈ Message→ Verifications | Σ(v, v→ σ, Nv→ Kp ∧ v → State = PRECOMMIT ∧ v→
Tx=Tx} >
 2(Nf – Ni)/3 then
 Message→ Type ←CLEARTX
 Message→ σ ←σ(Message, SenderAccount→ Ks)
 for n ∈ (Ni …Nf) do
 TRANSMIT (n, Message)
if SenderAccount→ Shard ≠ AccountList[DestAccount]→ Shard then
 Message→ Verifications ←COLLECTSTATE (SenderAccount)
 if #{v ∈ Message→ Verifications | Σ(v, v→ σ, Nv→ Kp) ∧ v→ State = FINALIZED ∧ v →
 Tx=Tx} > 2(Nf – Ni)/3 then
 (Ni , Nf) ←AccountList[DestAccount]→ Shard
 Message→ Type ←CLEARXSHARDTX
 Message→ σ ←σ(Message, SenderAccount→ Ks)
 for n ∈ (Ni …Nf) do
 TRANSMIT (n, Message)

Algorithm 2: StateList COLLECTSTATE (Account)

(Ni , Nf) ←Account→ Shard(Ni , Nf)
while j < Nf − Ni ∧ ∼TIMEOUT(Timeout) do
 if Σ(Reply ←WAITRECEIVE(),Reply→ σ, NodeList[Reply→ NodeAccount]→ Kp) then
 StateList ←StateList⏜Reply→State
 j++
return StateList

Algorithm 3: RECEIVETX (TxNumber,DestAccount)

Tx→ (TxNumber ←TxNumber, DestAccount ←DestAccount)
Message→ (Type ←REQUESTPJ, Account ←DestAccount)
(Ni , Nf) ←DestAccount→ Shard(Ni , Nf)
for n ∈ (Ni ...Nf) do
 TRANSMIT (n, Message)
while j ≤ (Nf − Ni) ∧ ∼ TIMEOUT(Timeout) do
 PennyJarList→ PennyJarList⏜WAITRECEIVE()
 j++
Tx→ Pennies ←{p ∈ PJ ∈ PennyJarList | #{pj ∈ PennyJarList | p ∃ pj} > 2(Nf – Ni)/3 }

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 20 of 22

Message→ Type ←CONFIRMTX
for n ∈ (Ni ...Nf) do
 TRANSMIT (n, Message)
Message→ Verifications ←COLLECTSTATE(SenderAccount)
if #{v ∈ Message→ Verifications | Σ(v, v→ σ, Nv→ Kp) ∧ v→ State = PRECOMMIT ∧ v →
 Tx=Tx} > 2(Nf – Ni)/3 then
 Message→ Type ←SETTLETX
 Message→ σ ←σ(Message, SenderAccount→ Ks)
 for n ∈ (Ni ...Nf) do
 TRANSMIT (n, Message)

Algorithm 4: Reply NODE(Message)

Tx ←Reply→ Tx ←Message→ Tx
Reply→ NodeAccount ←Node→ NodeAccount
(Ni , Nf) ←Node→ Shard(Ni , Nf)
if (∃ AccountList[Tx→ SenderAccount] ∧ Σ(Message, Message→ σ, AccountList[Tx→
SenderAccount]→ Kp)) ∨ (∃ AccountList[Tx→ SenderAccount] ∧ Σ(Message, Message→ σ,
AccountList[Tx→ DestAccount]→ Kp))
 then
 switch Message→ Type do
 case SENDTX do
 if AccountList[Tx→ SenderAccount]→ State = FINALIZED ∧ Tx→ Amount+Fee
 < AccountList[Tx→ SenderAccount]→ Chain[#Chain]→ Balance ∧ Tx→ TxNumber
=
 #Chain then
 Reply→ (State ←AccountList[Tx→ SenderAccount] →State ←PRECOMMIT), σ
←σ
 (Tx, NodeAccount→ Ks)

 case CLEARTX do
 if AccountList[Tx→ SenderAccount]→ State ≠ PREABORT ∧ Tx→ TxNumber =
#Chain
 ∧ (∀v ∈ Message→ Verifications ∃ NodeList[v→ NodeAccount] | Σ(v→ Tx, v→ σ,
 NodeList[v→ NodeAccount]→ Kp)= ⊤ ∧ ∀ w ∈ Message→ Verifications ∃ w→ Tx =
v→
 Tx) ∧ #{Messages→ Verifications} > 2(Nf – Ni)/3 then
 TxHash ←SHA(AccountList[Tx→ SenderAccount]→ Chain[TxNumber]→ Hash,
Tx)
 AccountList[Tx→ SenderAccount]→ Chain⌢TxHash
 AccountList[Tx→ SenderAccount]→ (Balance ←AccountList[Tx→
SenderAccount]→
 Balance - Tx→ Amount - Fee, Accountlist[Tx→ SenderAccount]→ TxNumber
←Tx→
 TxNumber++)
 Penny→ σ ←σ (Penny, Node)
 if AccountList[Tx→ DestAccount]→ Shard = Node→ Shard then
 AccountList[Tx→ DestAccount]→ PennyJar ←AccountList[Tx→ DestAccount→
 PennyJar ∪ Penny
 Reply→ (State ←SenderAccount→ State ←FINALIZED, Penny ←Penny)

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 21 of 22

 case CLEARXSHARDTX do
 if Tx ∉ AccountList[Tx→ DestAccount]→ Chain) ∧ (∀ v ∈ Message→ Verifications ∃
 NodeList[v→ NodeAccount] | Σ(v→ Tx, v→ σ, NodeList[v→ NodeAccount]→ Kp)= ⊤
∧ ∀
 w ∈ Message→ Verifications w→ Tx = v→ Tx) ∧ #{Message→ Verifications} > 2(Nf

–
 Ni)/3 then
 AccountList[Tx→ DestAccount]→ PennyJar ←AccountList[Tx→ DestAccount]→
 PennyJar ∪ {Message→ Penny}

 case CONFIRMTX do
 if AccountList[Tx→ DestAccount]→ State = FINALIZED ∧ Tx→ TxNumber =
#Chain ∧
 AccountList[Tx→ DestAccount]→ PennyJar | P = p) then
 Reply→ (State ←AccountList[Tx→ SenderAccount]→ State ←PRECOMMIT), σ
←σ
 (Tx, NodeAccount→ Ks)

 case SETTLETX do
 if AccountList[Tx→ DestAccount]→ State ≠ PREABORT ∧ Tx→ TxNumber =
#Chain
 ∧ (∀ v ∈ Message→ Verifications) ∃ NodeList[v→ NodeAccount] | Σ(v→ Tx, v→ σ,
 NodeList[v→ NodeAccount]→ Kp)= ⊤ ∧ ∀ w ∈ Message→ Verifications w→ Tx =
v→
 Tx) ∧ #{Messages→ Verifications} > 2(Nf – Ni)/3 then
 AccountList[Tx→ DestAccount]→ PennyJar ←{AccountList[Tx→ DestAccount]→
 PennyJar | ∀ p ∈ AccountList[Tx→ DestAccount]→ PennyJar ∉ Tx→ Pennies}
 AccountList[Tx→ DestAccount]→ Chain⌢SHA(AccountList[Tx→ DestAccount]→
 Chain, Tx)
 AccountList[Tx→ DestAccount]→ (Balance ←AccountList[Tx→ DestAccount]→

 Balance + ∑
|𝑇𝑥→𝑃𝑒𝑛𝑛𝑖𝑒𝑠|
𝑡=0 Tx→Pennies[i]→ Amount, Accountlist[Tx→

DestAccount]→
 TxNumber ←Tx→ TxNumber + #{Tx→ Pennies})

 case REQUESTPJ do
 Reply→ PennyJar ←AccountList[DestAccount]→ PennyJar
 REPLY(Reply)

DANDELION NETWORK WHITEPAPER (v.4)

For Distribution

Page 22 of 22

ANNEX B: ON THE SECURITY OF THE DANDELION PROTOCOL

Paper: On the Security of the Dandelion Protocol. Goncalves and Mashatan, 2022

Journal: Mathematics

Special Issue: Recent Advances in Security, Privacy, and Applied Cryptography

DOI: https://doi.org/10.3390/math10071054

Original: https://www.mdpi.com/2227-7390/10/7/1054

https://doi.org/10.3390/math10071054
https://www.mdpi.com/2227-7390/10/7/1054

