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“Α blockchain that claims to have solved the [Buterin] Trilemma of secure, scalable and 
decentralized, has either bent the laws of physics...  or it has discovered a breakthrough 
method that solves the major blockchain scalability problems that have stumped top 
mathematicians and computer scientists for the past decade.” 

- Georgios Konstantopoulos (Konstantopoulos, 2018) 

0. EXECUTIVE SUMMARY 

Open blockchain networks enable global peer-to-peer transactions through the property 
of distributed trust (Anjum et al., 2017; Bellini et al., 2020; Karame & Capkun, 2018).  Most 
successful blockchain models rely on either raw computing power (as in Proof of Work, PoW) or 
of exogenous currency (as in Proof of Stake, PoS) to commit network nodes to honest consensus.  
However, the accruing reinvestment cycle and economies-of-scale have driven centralization of 
node ownership, undermining the distributed trust property.  In PoW, this has manifested in large 
scale mining companies making infrastructure investments on the scale of tens or hundreds of 
millions of dollars, excluding small operators from the network.  In PoS, the store of value 
transfers directly from an origin currency into the staked blockchain without the need for physical 
infrastructure, which enables even faster centralization.  A related problem is that the blockchain 
paradigm is inherently serial, which means scaling requires awkward work-arounds.  These 
realities both increase costs and limit applications.  We describe Dandelion, an alternative, 
centralization-resistant network, demonstrating long-term security, rapid finalization, and 
unrestricted scalability.  Development to date confirms that this network can dramatically reduce 
gas (operating costs), finalization time, and attack vulnerabilities, while allowing a fully scalable 
transaction system and a wide variety of Decentralized Finance (DeFi) systems built on top of 
them. 

1. BACKGROUND 

Sufficiently decentralized networks have the property of distributed trust (Beck et al., 
2016; Dorri et al., 2017; Veloso et al., 2019).  This means the network may be trusted to execute 
transactions honestly, even if no individual on it may be.  This automated trust disintermediates 
traditional third-party trust-providers (e.g., banks, markets, etc.), and can operate considerably 
more efficiently.  Bitcoin and subsequent networks like Ethereum have demonstrated global 
demand for this service model. 

 
Traditionally, these networks have operated under a parallel computing model which 

equilibrated a trade-off between three core attributes: (i) the security and integrity of the network, 
(ii) its intended decentralization and trust distribution, and (iii) its overall scalability.  This 
prompted designs in which a “choose-2” trade-off over a primary attribute evolved.  First 
expressed by the founder and designer of the Ethereum network, Vitalik Buterin, this has become 
the eponymous Buterin Trilemma (Altarawneh et al., 2020). 
The use of the PoW method to underpin honest consensus was developed in the Bitcoin Network 
(Nakamoto, 2008), which operates a computational race to find the cryptographic magic numbers 
required to advance the blockchain.  Solving for these numbers requires substantial computing 
power demanding a proportionally large amount of electrical power; in effect, Bitcoin 
encapsulates this consumed electrical power in a verifiable token.  This is akin to the energy 
encapsulation (as labor, fuel, and materials) in gold mining and refining, which also results in a 
verifiable token.  This serves as the basis for the network’s distributed trust property and is an 
innovation in econophysics as much as in computer science. 
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Unfortunately, the PoW model is 
intrinsically inefficient.  The central Bank of 
Canada found that operating the Canadian 
economy on Bitcoin would require 26.3 
times the entire power consumption of the 
country (Chapman & Wilkins, 2019) and 
currently that network consumes more 
electrical power than industrialized Sweden 
(Rauchs et al., 2021).  Although this ratio 
may improve, research into energy 
consumption as a “Granger-cause” for GDP 
growth suggests that the available useful 
energy (in quality-indexed British thermal 
units) to such an economy would need to 
expand infeasibly to satisfy the utility 
promised by such PoW models (Cleveland 
et al., 2000).  One may draw the clear 
conclusion that Bitcoin cannot plausibly 
underpin a majority of economic 
transactions and may continue to prove 
problematic in other derivative PoW 
networks, including Ethereum.  PoS systems (Buterin & Griffith, 2017; Zamfir et al.) displace this 
physical investment with economic investment.  Given that the investment is indirect, PoS 
appears more efficient, but purchasing stake substitutes primary electrical power for derivative 
economic power.  Under current economic theory (ref.  Cleveland et al., 2000), economic power 
follows available energy inputs into that economy.  Thus, PoS’s extensible utility and economic 
value still require at least proportional energy to maintain security properties as demand rises. 

 
This energy problem is a serious concern, but more important is the second-order effect 

of these costs, which provide economies of scale to rent-seeking network participants through 
cost-reduction methods (e.g., larger mining operations) and revenue-maximization (as mining 
pools) (Lin William Cong et al., 2019).  These have driven consolidation of network ownership, 
which is an expected economic process.  However, in the case of open blockchain networks, 
centralization erodes the distributed trust property and thereby reduces the network’s intended 
value (Swanson, 2014).  Currently, just three major mining pools control over 50% of Ethereum, 
and just four control over 50% of Bitcoin; indeed, “51% attacks” have already been successful 
against smaller blockchains such as Ethereum Classic (Jenkinson, 2019) and Bitcoin Gold.  
Without the physical constraint of building mining infrastructure, PoS networks are likely to 
centralize even faster.  If open blockchains are to be universally accepted as an economic medium, 
then not only must node-ownership be widely distributed, it must remain so in the face of 
centralizing forces (see Figure 1). 
 

To prevent this, node-owners must be structurally prevented from collusive coalitions; but 
even absent collusion, node operators in PoW and PoS systems have available to them 
mechanisms to maximize their private profit at the expense of network clients (Eskandari et al., 
2019). 

1.1. Problem Definition 

In order to provide sustainable distributed trust, a network must resolve the Buterin 
Trilemma (Figure 2), simultaneously providing: 

Figure 1: Qualitative feedback of blockchain’s current 
state of art. 
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(i) Decentralization —Network membership must be available to any node of computing 
power, O(c)1; 
 
(ii) Scalability —The entire network must have computing power O(n)>O(c), where n equals 
network membership and O(n) is its computing power, which suggests an ability to process 
transactions in parallel; and, 
 
(iii) Security — Any malicious actor (as 
Adversary) must have computational power 
>O(n) to compromise the integrity of the 
network. 

In operation, the network must be 
provably secure and demonstrably 
decentralized in order to underpin 
transactions effectively, meaning scalability 
is the necessary sacrifice (Monte et al., 
2020).  Moreover, the decentralization 
property must hold against the pressure of 
economies-of-scale and other external 
forces.  This is demonstrably not true in 
current systems. 

2. DANDELION NETWORK 

We propose the Dandelion Network which can solve the Trilemma under a model which presumes 
its nodes and clients are (i) economically rational and (ii) exist in the real world, with the 
assumption set:  
 
(i) Senders expect an external gain-in-trade and thus seek to clear transactions they have 
initiated. 

(ii) Receivers expect to become Senders in the future (undefined) and thus seek to settle 
inbound transactions and to deposit proceeds into their accounts. 

(iii) Nodes are a special subset of Receivers and are rewarded (incentivized) for processing 
transactions.  Reward for correct and compliant processing must exceed the potential external 
reward for any other behavior within their choice set. 

To achieve this, the Dandelion transaction network implements three key improvements to 
conventional blockchain technologies:  
 
(i) Architecture— The Dandelion Root (Realtime Optimized Order Transactions) blocklattice 
is the core data model.  Blockchains are inherently serial structures, whereas the blockattice is 
inherently parallel.  This allows parallel processing of both transactions and smart contracts, 
increasing efficiency and throughput. 

(ii) Consensus—the Dandelion Leaf consensus mechanism.  This patented protocol offloads 
bandwidth requirements from nodes to clients, reducing communications complexity at the node 

                                                             
1 In computer science, “Big-O” notation is typically used to relate functions tending toward limits, infinities, or asymptotes, 
such as computing power, storage constraints, network growth, algorithm run-time, etc.  Here, we describe the limiting 
relationship amongst the Trilemma’s determinants.   

Decentralization

ScalabilitySecurity

Idealized Open 
Transaction Network

Figure 2: The “choose-2” trade-off per the Buterin 
Trilemma. 
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to O(1) from (typically) O(n^2).  This in turn enables tens of thousands of peer-nodes the 
decentralization and security parameters of the network. 

(iii) Asynchronicity—The Dandelion Stem asynchronous clear/settle paradigm decouples the 
clearing and settlement mechanisms, and allows cross-shard transactions.  This allows the 
network to scale without limit. 

These technologies are mutually enabling.  Collectively, they achieve clear-and-settle of 
transactions in less than one second at unmatched high network throughput and unrestricted 
scaling.  This makes the network as efficient as is physically possible for a given level of 
communications/computation technology, and a chosen level of distributed trust. This efficiency 
translates directly into transaction costs and gas fees several orders of magnitude lower than are 
possible on either competing blockchain networks or conventional transaction rails. 

3. ARCHITECTURE 

3.1. Definitions 

(i) A clear is an operation in which an amount is debited from an account, creating a new 
balance. 

 
(ii) A settle is an operation in which an amount is credited to an account, creating a new 
balance. 

 
(iii) A transaction is a complementarily matched pair of exactly one clear and one settle 
operation, occurring asynchronously. 

 
(iv) A fee is an amount charged for a transaction.  Fees are burned (see Figure 3) by including 
them in the debited amount in clear operations but not in the credited amount of the matching 
settle operation. 

 
(v) A chain or account-chain is a set of hash-linked balances, resulting from successive clear 
and/or settle operations.  Every transaction links to two account-chains. 

 
(vi) A pennyjar is an unordered buffer associated with an account-chain which stores 
incoming transactions prior to a settle.  The analogy is a tip jar which stores an unordered stream 
of incoming donations until the receiver can count and order them. 

 
(vii) Pennies are incoming, unsettled transactions stored in the pennyjar. 

 
(viii) A pennyroll is a collated and serialized list of pennies. 

 
(ix) An account collectively describes the designated chain with its associated pennyjar and 
supporting metadata, identified by the public key of a public-key/secret-key keypair pair.  The 
public-key is used to confirm that transactions on the account are valid by proving they are signed 
by the associated secret-key. 
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(x) Tokens are the Dandelion network’s fungible currency as exchanged between accounts 
through transactions.2  

 
(xi) A client is a network-connectable device which holds the private-key to an account and 
executing the processes required to clear and to settle transactions. 

 
(xii) A node is a computer and which earns tokens through the ongoing maintenance of a 
dynamic subset of accounts and the verifying/authorizing of transactions involving its designated 
accounts. 

 
(xiii) Minting is the process by which nodes are rewarded tokens for execution of their activities. 

 
(xiv) A shard is a subset of nodes across which all maintain and cross-verify the same subset of 
accounts.  The network can include an arbitrary number of shards. 

 
(xv) The network is the full set of all shards. 

 

3.2. Data structure  

The Dandelion network’s basic structure is not a 
blockchain, but a blocklattice.  This differs from 
existing blockchain protocols in several 
important respects. 
 
(i) There are many chains.  Every account 
maintains its own account-linked transaction-
chain.   

(ii) There are no blocks.  Each account-level 
transaction forms its own link in its paired 
transaction-chain.   

(iii) Transactions are discretely matched and 
paired as a distributed ledger (DL).  For every 
outgoing (cleared) transaction sent from an 
account-chain, there must exist a correlating 
incoming transaction (settled) on another 
account-chain.  This is analogous to double-
entry book-keeping. 

(iv) Chains are updated through an 
asynchronous clear/settle protocol. 

This structure produces several important advantages over conventional blockchains: 
 

                                                             
2 Internally, the Dandelion network’s tokens are called Pennies; but to avoid confusion, any use of Pennies in this 
document strictly refers to the backlog of incoming, unsettled transactions. 

Figure 3: Dandelion TLDAG structure with state 
advances for a match-paired transaction, across 

two separate transactions. 
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(i) Each account has its own chain, thus finalization time is limited only by available 
bandwidth to the client’s device; 

(ii) Transaction order is optimized by the client (Dandelion Root). 

(iii) Clearing and settling are asynchronous which allows the network to scale without limit 
(Dandelion Stem); and, 

(iv) Transactions are processed individually and in parallel, and therefore there is no 
opportunity for in-block front-running, empty-block mining, or Miner Extracted Value. 

3.3.  State Machine 

Dandelion advances state using a simple state machine to implement a two-phase commit 
process (see Figure 4).  Every node maintains a version of this state machine for every account 
chain in its subset of the TLDAG.  Perforated lines indicate state transitions requiring messages 
signed by the client’s private-key.  Solid lines indicate state transitions requiring the aggregated 
signatures of a ⅔ majority of the nodes of the account-chain’s given shard.3 

3.4. Node States 

Finalized.  The finalized state (State 
0, S0) is the normal “resting” state of 
the state machine in which all 
transactions have been processed up 
to the current transaction number 
(Txi).  In this state, the account 
balance is available, and the client 
may: (i) precommit to a transaction; 
(ii) move to the preabort state if the 
client wants to abort a transaction 
which has been precommitted on 
other nodes; or (iii) advance the 
node to any finalized state (States 1a, 
1u, or 1c) upon receiving the collated 
verifications confirming that the 
majority of its shard’s nodes is 
advancing or has advanced its 
aggregate state-machines to such 
finalized state. 

Lagging.  When a node’s account-chain for a given client is not current with the majority of nodes 
on its shard, it is lagging.  Here, a majority of nodes has already advanced through the state 
machine to finalize a subsequent transaction, and the lagging node may be updated (State 1u) 
through an authenticated update or abort request. 

Precommit.  The precommit state indicates that the client has requested a transaction of a node 
and the node has validated the transaction; but the node has not yet authenticated that the client 
has duplicated the request across a majority of nodes on its shard.  An account on a node in 
precommit is locked to new transactions.  It may be moved to a committed state (State 1c) through 
an authenticated commit request; the same holds for achieving a subsequent updated state (State 
1u) through an authenticated update request (if it is lagging on one or more finalizations), or to a 

                                                             
3 In balancing the tradeoff between liveliness and safety when contending with byzantine failures, as a 
deterministic system, Dandelion uses 3f+1 which derives to the “>2⁄3 majority” consensus threshold. 

Figure 4: Dandelion's general state machine advances. 
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subsequent aborted state through a preabort request from the client, followed by an authenticated 
abort request (State 1a). 

Preabort.  The preabort state indicates that the client is cancelling an already initiated 
transaction.  As with the precommit state, the preabort state is locked to new transactions, but 
may be updated with an authenticated update request if it is lagging (advance to State 1u).  An 
authenticated abort request moves the state machine to a finalized state in which the transaction 
number advances but the balance is unchanged (State 1a). 

3.5. Shard States 

Shard state.  Refers to the aggregated state of all node states for a given account.  A client may not 
be able to contact some or all of a shard’s nodes at any given time.  Thus, different nodes may be 
in different states with respect to the client’s account.  Shards can be in one of two shard states: 

Consistent.  An account is in a consistent state when a simple-majority of the nodes in its shard 
are either in the same state or can be moved to the same state by completing a single state 
transition; or, 

Inconsistent.  An account is in an inconsistent state when it is not in a consistent state.  An 
inconsistent state may always be brought to a consistent state by transiting the abort process.  
Inconsistent states are not expected in normal operations but may arise through Byzantine failure. 

4. CONSENSUS 

4.1. Client-Leader 

Two-phase commit is a form of 
leader-based consensus system, in which a 
single machine coordinates the advance of 
the state machine across all nodes.  
Conventional leader-based systems suffer 
three flaws.  First, the leader is in a 
privileged position to determine unilaterally 
the unique order of transactions.  This is a 
significant problem for markets in which 
either the transaction order has priority 
consequence (e.g., time-fluctuating prices), 
or where the leader may wish to prevent 
certain transactions from proceeding at all 
(i.e., transaction censorship).  Second, the 
leader represents a single point of failure.  A 
denial-of-service attack need only target the 
network’s leader, a task orders of magnitude 
easier than attacking a majority of nodes in 
any large network.  Most leader-based 
models have crash-recovery/leader-election 
systems to replace a failed leader rapidly, but a malicious node will be able to identify the new 
leader immediately as soon as the recovery process completes, and so can redirect the attack to 
disrupt the network continuously.  Finally, the leader’s communications load rises quadratically 
(O(n2)) with the size of the network, which strictly limits both the number of nodes and the total 
volume of processable transactions. 
 

Dandelion’s Leaf mechanism (see Figure 5) resolves these problems using the patented 
client-leader paradigm.  With the Client’s account replicated across all nodes of its associated 

Figure 5: Client-Leader overview 
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shard, the client becomes the leader for its own account-chain and is responsible for advancing 
the state machine across its shard.  This offers several benefits.  First, nodes do not and need not 
communicate with each other.  All communications go through the client.  This offloads the 
network’s quadratic communications (O(n2)) to the client, while the nodes’ communication load 
rises only as O(n) with node count, enabling a very high node count and thus a very high level of 
distributed trust.  By definition, clients process fewer transactions than the network broadly; thus, 
a quadratic rise in communication load at the client does not limit total network throughput.  
Further, each client is free to allocate resources to the system as best befits its needs, which 
enables many different client configurations, including direct clear-settle, gateway access, single-
device and distributed-client configurations.  Finally, short of complete network shutdown, 
leader-targeted denial-of-service attacks can only disrupt transactions on individual accounts and 
only until the client identifies the attack and connects via an alternative path to its nodes. 
 

The quadratic rise in communication load can be further improved in Dandelion’s case, 
because the load consists of n signatures which must be received from and then retransmitted to 
n nodes.  However an aggregable signature scheme such as Boneh-Lynn-Shachem (BLS) allows 
the aggregation of multiple signatures into a single signature data block.  In this case, the 
transmission load, at the client, rises only as O(n).  At the node, the communications load is static 
(ie, O(1)) regardless of the number of nodes. 

5. TRANSACTION 

5.1. Asynchronous 
Clear-and-Settle 

Dandelion Stem 
prevents double-spending by 
locking the sender’s state 
machine to new transactions 
whilst it is in a transitional 
clearing state, thus allowing 
only one outbound transaction 
at a time.  However, the 
receiver’s account-chain may 
receive any number of inbound 
transactions at once, in any 
order, from different subsets of 
nodes in different shards.  
Dandelion resolves this 
complexity by associating each 
client account with an 
unordered data buffer (i.e., 
“pennyjar”) which receives and 
stores incoming transactions 
for settlement (Figure 6).  Upon 
finalization of a clear on the 
corresponding sender’s 
account, the resulting penny is transferred into the receiver’s pennyjar.  Under Dandelion’s Client-
Leader protocol, onus then lies with the receiver client to settle transactions onto its own account-
chain. 
 
This offers the following advantages: 

Figure 6: Dandelion's asynchronous clear-settle mechanism. 
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(i) Sender and receiver do not have to be connected at the same time to execute the 
transaction. 
 
(ii) Transactions can clear and settle across shards, allowing the network to scale unrestricted. 

 
(iii) Senders and receivers are able to negotiate and to confirm the transaction out-of-band, 
using any digital or physical channel as may befit the application layer (e.g., NFC, QR code, URL, 
post mail, etc.). 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7: Dandelion generalized full transaction sequence. 

5.2. Complete transaction sequence 

Figure 7 illustrates a complete Client-Leader cross-shard transaction between sender 
(Alice) and receiver (Bob).  Figure 7 is generalized and various permutations and configurations 
are readily constructed at the application layer.  Importantly, under Client-Leader, clients assume 
responsibility for finalization.  As clients will not initiate transactions which they do not intend, 
normal transactions will follow this generalized sequence.  Reference algorithms defining sending 
(1–Send), request validations (2–Collect States), updating receiver account (3–Receive), and 
finally receiving (4–Reply), are provided in Annex A: Reference Algorithms. 
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5.3. Abort sequence 

If a client decides not to complete a transaction which has not been precommitted on >⅔ 
of nodes (e.g., in the event of a disconnection or interruption), the client may choose to abort the 
transaction.  In this case, any precommit nodes may be moved to the preabort state.  On collecting 
>⅔ of signatures for the preabort state, the client may then move the transaction to the aborted 
state.  The previously committed state is abandoned, and its transactions’ pennies withdrawn 
from the recipient pennyjar. 
 

Throughout the abort process, it is impossible to clear any of the partially completed 
transactions given that >⅔ of nodes are never committed to any one of them; and it is impossible 
to settle any of the partially completed transactions, as none has been cleared.  Per our 
Assumption-1 (Senders only initiate to obtain external gain-in-trade), the preceding behavior is 
not economically rational and thus initiated transactions will not normally be aborted.   
 

 
Figure 8: Inconsistent states and the Abort sequence for resolution. 

Figure 8 shows the state progression through the abort state for a network in an inconsistent 
state.  Note, the state number is advanced through the abort sequence, even though the balance 
is reverted.   

5.4. Update Sequence  

Nodes which are offline when a transaction is finalized will become lagging.  To account 
for this, the state machine allows clients to update lagging nodes with verifications as signed by a 
>⅔ majority of nodes in the current finalized state.  On receiving an update request, the nodes 
return the range of transaction IDs required to move the state machine from the furthest lagging 
state to the current state.  The client then broadcasts these verifications to the lagging nodes.  On 
receiving >⅔ verifications, lagging nodes can completely update the client’s chain for this 
transaction range without transiting the precommit-commit process for each link in the chain. 
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5.5. Byzantine Clients and Inconsistent States 

A consequence of the client leader model is that clients are completely responsible for 
maintaining the state of their own account chain.  While it is not possible for a byzantine client to 
finalize more than one transaction at a time, it is possible for byzantine client to put their chain in 
an inconsistent state.  In this case the client initiates a transaction and obtains verifications from 
>⅔ of the nodes, but only commits the transaction for <⅔ of nodes; it may then initiate a second 
transaction, maximally gaining the remaining minority verifications (<⅓), which cannot be used 
to finalize the second transaction on any of the nodes.  The client can initiate any number of 
transactions on a minority (<⅓) of nodes, but because the client cannot collect a ⅔ majority of 
verifications for such transactions, none can finalize; rather, only the first transaction can finalize, 
for which >⅔ have committed. 
 

When the byzantine failure of the responsible client is cleared, the chain can be returned 
to a consistent state by moving the precommitted nodes through the abort cycle.  Through this 
process no transaction can be cleared.  The account chain is advanced to the next state, with 
balance and transaction status equal to the previous state. 
 

5.6. Performance  

 
Unlike conventional blockchains, Dandelion does not have an inherent transaction rate.  

Rather, transaction performance parameters are governed by the number of signatures per 
second that can be processed and transmitted.  As these figures will vary across both nodes and 
clients, performance will also vary both between transactions and over network life.  Upgrade 
incentives built into the tokenomics will provide for continuous improvement as the underlying 
technology advances.  Note that total network throughput is governed by the performance of the 
median node; as transactions require only strictly >⅔ consensus, clients may freely ignore slower 
verifications for finalization and update slower nodes later.   
 

With this in mind, performance under present day realworld conditions can be estimated.  
At the node, and for the network as-a-whole, the figure-of-merit for performance is transactions 
per second.  Using BLS aggregable signatures, signature verification costs rises linearly with 
network size (O(n)), while transmission costs scale with total throughput.  This implies that 
capacity for both should be matched for optimal efficiency (ie, bandwidth and processing power 
should scale together as the network becomes more distributed, and the transaction demand 
rises).  Nodes are rewarded for participating in consensus and so are motivated to improve their 
performance to ensure their inclusion in settlement rounds.  Figure 9 presents the estimated 
transaction throughput by network size and 
data-rate.  At a shard size of 10000 nodes, 
with server-grade hardware and Gbit 
connectivity and matching processor power, 
the network can process more than 250,000 
transactions per second, per shard.  For 
comparison, the VISA network averages about 
1,700 transactions per second (Li, 2019) and 
has a peak capacity of  at 54,000 transactions 
per second.  10Gb is commonly available for 
wired/fibre connections around the planet. 
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At the client, the figure-of-merit is 
finalization time.  For this metric, the 
verification load at the client is fixed and light, 
but transmission demand rises as the linearly 
with network size.  This is a concern as simple 
transactions between locally connected mobile 
devices are a major use case and. Under current 
technology, mobile devices have best-possible 
data-rate of approximately 1 Gbit/s on high 
quality 5G.  Figure 10 presents the finalization 
time as a function of network size.  From this 
analysis, it can be seen that good 5G connectivity 
allows direct peer-to-peer transaction sub-second 
finalization on a network of 16000 nodes.  For a 
global network, this means total transaction time 
will be dominated by the maximum normal-
condition round trip time to the most distant 
node, which can be taken to be a maximum of 1.5s 
(three round trips with 250ms trans-globe latency).  However, even on a low quality 5G 
connection or older generation connections, transactions are finalized within seconds.  For clients 
with slower connections, Dandelion’s structure allows the use of gateways: These are systems 
configured to receive verifications on a low-speed channel once, and then rebroadcast those to the 
shard over a high bandwidth channel.  For example, a client point-of-sale terminal configured for 
transaction settling over a fiber-link may provide a counterparty client on a mobile device with a 
high-speed connection to clear the transaction without any use of wireless connectivity.  
Performance enhancements beyond the simple peer-to-peer single-transaction model are 
discussed below. 

5.7. Performance Enhancement 

Beyond these raw performance metrics, the asynchronous client-leader paradigm enables 
several special case situations where performance can be increased.  
 

 Transaction Stacking. 

 
The sequence of signature exchanges as detailed above is required to complete a single 

transaction.  However it is possible to stack any number of subtransactions into the same 
signature exchange.  On the sending client side, the client may package any number of transaction, 
with different amounts and recipients into the same signature exchange.  The nodes simply 
confirm that the sum of all the subtransactions is within the balance of the sending client.  The 
state machine is advanced normally, and on finalization, each subtransaction is sent to its 
respective receiving client.  On the receiving client side, the entire contents of the penny jar can 
be downloaded by the receiving client, a single unique order of inbound transactions for which a 
majority of signatures has been received is established, and that ordering is sent back and finalized 
across all the nodes.  This is useful for high-volume applications, such as exchanges and payment 
systems, where transactions can be efficiently batched in short intervals. 
 

 Transaction Delegation 

 
Both the clear and settle halves of a transaction are authorized by the cryptographic 

signature of the respective client.  In general, the network is agnostic as to the device that 

Figure 9: Estimated transactions per second, by network 
size and median bandwidth. 

Figure 10: Finalization time by network size and 
bandwidth. 
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actually carries out the signature exchange sequence.  In a use-case such as tap-and-pay, this 
allows a performance increase based on the fact that the receiving clients can generally be 
expected to have much higher band-width and processing power available than the sending 
client.  In this case, the sending client may cryptographically sign the initial transaction request, 
and then send it locally to the receiving client.  The receiving client can then finalize both the 
clear and settle halves of the transaction using its higher bandwidth.   
 

The reverse is also true, and this can be combined with transaction stacking.  A receiving 
client may download and order its entire penny jar, using transaction stacking, and then 
delegate the sending client (or generally any device) to perform the required transmission 
rounds.  This technique will avoid congestion issues in high usage/high density areas where 
many clients use shared bandwidth, such as wifi and cellular data. 
 

  Client Configuration 

 
A client is any device which holds a secret key associated with an account, together with 

the required software to carry out the Dandelion Protocol.  A simple peer to peer model is two 
smartphones, each configured as above, which connect over local NFC to exchange transaction 
data, and the perform the clear and settle halves of the transaction with the nodes of the 
network through cellular connectivity.  However the ability to stack transactions and delegate 
finalization allow many other configurations.  A smart-card with NFC and on-board processing 
can authorize a transaction with an on-board secret key, and then delegate finalization to a 
independent point-of-sale terminal with a hardwired connection.  A financial institution 
datacenter may hold many accounts internally, and stack transactions as required to serve its 
customers, before batching them to a finalization system that communicates with the network.  
A retail organization can have many point-of-sale terminals send transaction data over a virtual 
private network to a central finalizing system, while simultaneously pushing the data into their 
internal databases, which can then generate private intelligence in realtime.  The flexibility of 
the client-leader configuration allows specific users to customize their performance and 
operating characteristics to fit their particular use case. 

6. SMART CONTRACTS 

 
Smart contracts are independent pieces of code running on a network with the property of 

distributed trust.  As long as the distributed trust property holds and the network continues to 
operate, a smart contract will function according to its logic.  Smart contracts have transactions as 
inputs and outputs, and the network charges fees for their execution.  As a fully parallel, 
asynchronous network, the Dandelion network will run smart contracts with the same efficiency 
benefits it brings to simple transactions.  Specific characteristics of the Dandelion Smart Contract 
platform are: 

 
(i) Dataflow operation.  As Dandelion is inherently parallel, it is possible to abandon the 
control-flow paradigm and use the dataflow model instead.  This allows fully parallel smart 
contract operation without the risk of deadlocks or livelocks.  Parallel operation represents a 
considerable efficiency gain over conventional blockchain systems. 
 
(ii) Fair ordering.  In many cases the order of transaction processing is important (eg, 
differing orders of buy or sell option execution can have differing financial outcomes).  However  
Dandelion’s smart contract design fairly orders incoming transactions and disambiguates 
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“simultaneous” submissions fairly, and without the ability for clients or nodes to predict in 
advance which  

 
(iii) No latency arbitrage.  Latency arbitrage depends on physical proximity to the exchange 
floor in order to receive information and execute operations in a time cycle shorter than 
operations farther from the floor can manage due to intrinsic communications delays.  Overall 
network operation combined with fair ordering renders this impossible on the Dandelion 
Network. 

 

7. PROVABLE SECURITY 

Dandelion’s security has been proven mathematically in On the Security of the Dandelion 
Protocol (Goncalves and Mashatan 2022) published in Mathematics  2022, (Recent Advances in 
Security, Privacy, and Applied Cryptography) 10(7), 1054;   - 25 Mar 2022  The full analysis is 
included as Annex B to this document. 
 

8. CONCLUSION 

The Dandelion network provides a resolution to the Buterin trilemma by: (i) employing a 
Transaction Linked Directed Acyclic Graph rather than a traditional blockchain, (ii) empowering 
a Client-Leader consensus mechanism which both retains sufficiency of trust properties while 
offloading the bandwidth demands onto the participating clients, and (iii) decoupling the clearing 
and settling of transactions such that asynchronous requests and approvals are intrinsically 
managed.  Moreover, these characteristics are built (iv) using a post-quantum cryptographic 
model.  Collectively, Dandelion enables a transaction method with real-time finalization and with 
highly scalable transaction throughput. 
 

Dandelion will provide a superior mobile P2P network for transacting application layers 
for which existing distributed application operators may dramatically offset the risks and costs 
posed by finalization fees (gas costs), network seizure and centralization (consensus risk), and 
frontrunning and collusive activities (transaction vulnerabilities). 
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ANNEX A: REFERENCE ALGORITHMS 

 

Algorithm 1: SENDTX (SenderAccount, TxNumber, DestAccount, Amount) 

 

Tx→ (SenderAccount ←SenderAccount, TxNumber ←TxNumber, DestAccount 
←DestAccount,  
 Amount ←Amount)  
Message→ (Tx ←Tx, Type ←SENDTX σ ←σ(Message, SenderAccount→ KS) 
(Ni , Nf ) ←SenderAccount→ Shard (Ni , Nf ) 
for n ∈ (Ni …Nf ) do 
    TRANSMIT (n, Message) 
Message→ Verifications ←COLLECTSTATE(SenderAccount) 
if #{v ∈ Message→ Verifications | Σ(v, v→ σ, Nv→ Kp ∧ v → State = PRECOMMIT ∧ v→ 
Tx=Tx} >  
 2(Nf – Ni)/3 then  
    Message→ Type ←CLEARTX 
    Message→ σ ←σ(Message, SenderAccount→ Ks) 
    for n ∈ (Ni …Nf ) do  
       TRANSMIT (n, Message)  
if SenderAccount→ Shard ≠ AccountList[DestAccount]→ Shard then 
    Message→ Verifications ←COLLECTSTATE (SenderAccount) 
    if #{v ∈ Message→ Verifications | Σ(v, v→ σ, Nv→ Kp) ∧ v→ State = FINALIZED ∧ v →  
     Tx=Tx} > 2(Nf – Ni)/3 then 
        (Ni , Nf ) ←AccountList[DestAccount]→ Shard 
        Message→ Type ←CLEARXSHARDTX 
      Message→ σ ←σ(Message, SenderAccount→ Ks) 
      for n ∈ (Ni …Nf ) do  
          TRANSMIT (n, Message) 

 
Algorithm 2: StateList COLLECTSTATE (Account) 

 

(Ni , Nf ) ←Account→ Shard(Ni , Nf ) 
while j < Nf − Ni ∧ ∼TIMEOUT(Timeout) do  
    if Σ(Reply ←WAITRECEIVE(),Reply→ σ, NodeList[Reply→ NodeAccount]→ Kp) then  
        StateList ←StateList⏜Reply→State 
      j++  
return StateList 

 
Algorithm 3: RECEIVETX (TxNumber,DestAccount) 

 

Tx→ (TxNumber ←TxNumber, DestAccount ←DestAccount) 
Message→ (Type ←REQUESTPJ, Account ←DestAccount) 
(Ni , Nf ) ←DestAccount→ Shard(Ni , Nf ) 
for n ∈ (Ni ...Nf ) do 
    TRANSMIT (n, Message) 
while j ≤ (Nf − Ni) ∧ ∼ TIMEOUT(Timeout) do 
    PennyJarList→ PennyJarList⏜WAITRECEIVE() 
    j++ 
Tx→ Pennies ←{p ∈ PJ ∈ PennyJarList | #{pj ∈ PennyJarList | p ∃ pj} > 2(Nf – Ni)/3 } 
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Message→ Type ←CONFIRMTX 
for n ∈ (Ni ...Nf ) do 
    TRANSMIT (n, Message) 
Message→ Verifications ←COLLECTSTATE(SenderAccount) 
if #{v ∈ Message→ Verifications | Σ(v, v→ σ, Nv→ Kp) ∧ v→ State = PRECOMMIT ∧ v →  
 Tx=Tx} > 2(Nf – Ni)/3 then 
    Message→ Type ←SETTLETX 
    Message→ σ ←σ(Message, SenderAccount→ Ks) 
    for n ∈ (Ni ...Nf ) do 
        TRANSMIT (n, Message) 

 
Algorithm 4: Reply NODE(Message) 

 

Tx ←Reply→ Tx ←Message→ Tx 
Reply→ NodeAccount ←Node→ NodeAccount 
(Ni , Nf ) ←Node→ Shard(Ni , Nf ) 
if (∃ AccountList[Tx→ SenderAccount] ∧ Σ(Message, Message→ σ, AccountList[Tx→ 
SenderAccount]→ Kp)) ∨ (∃ AccountList[Tx→ SenderAccount] ∧ Σ(Message, Message→ σ, 
AccountList[Tx→ DestAccount]→ Kp)) 
    then 
      switch Message→ Type do 
            case SENDTX do 
                if AccountList[Tx→ SenderAccount]→ State = FINALIZED ∧ Tx→ Amount+Fee 
            < AccountList[Tx→ SenderAccount]→ Chain[#Chain]→ Balance ∧ Tx→ TxNumber 
=  
            #Chain then 
                    Reply→ (State ←AccountList[Tx→ SenderAccount] →State ←PRECOMMIT), σ 
←σ  
                (Tx, NodeAccount→ Ks) 
 
         case CLEARTX do 
            if AccountList[Tx→ SenderAccount]→ State ≠ PREABORT ∧ Tx→ TxNumber = 
#Chain  
             ∧ (∀v ∈ Message→ Verifications ∃ NodeList[v→ NodeAccount] | Σ(v→ Tx, v→ σ,  
             NodeList[v→ NodeAccount]→ Kp)= ⊤ ∧ ∀ w  ∈ Message→ Verifications ∃ w→ Tx = 
v→  
             Tx) ∧  #{Messages→ Verifications} > 2(Nf – Ni)/3 then 
                TxHash ←SHA(AccountList[Tx→ SenderAccount]→ Chain[TxNumber]→ Hash, 
Tx)  
                AccountList[Tx→ SenderAccount]→ Chain⌢TxHash 
                AccountList[Tx→ SenderAccount]→ (Balance ←AccountList[Tx→ 
SenderAccount]→  
                Balance - Tx→ Amount - Fee, Accountlist[Tx→ SenderAccount]→ TxNumber 
←Tx→  
                TxNumber++) 
                Penny→ σ ←σ (Penny, Node) 
                if AccountList[Tx→ DestAccount]→ Shard = Node→ Shard then 
                    AccountList[Tx→ DestAccount]→ PennyJar ←AccountList[Tx→ DestAccount→  
                    PennyJar ∪ Penny 
            Reply→ (State ←SenderAccount→ State ←FINALIZED, Penny ←Penny) 



DANDELION NETWORK WHITEPAPER (v.4) 

 

 

 
For Distribution 

Page 21 of 22 

 

 
         case CLEARXSHARDTX do 
            if Tx ∉ AccountList[Tx→ DestAccount]→ Chain) ∧ (∀ v  ∈ Message→ Verifications ∃  
            NodeList[v→ NodeAccount] | Σ(v→ Tx, v→ σ, NodeList[v→ NodeAccount]→ Kp)= ⊤ 
∧ ∀  
            w  ∈ Message→ Verifications w→ Tx = v→ Tx) ∧ #{Message→ Verifications} > 2(Nf 

–      
               Ni)/3 then 
                AccountList[Tx→ DestAccount]→ PennyJar ←AccountList[Tx→ DestAccount]→  
                PennyJar ∪ {Message→ Penny} 
 
         case CONFIRMTX do 
            if AccountList[Tx→ DestAccount]→ State = FINALIZED ∧ Tx→ TxNumber = 
#Chain ∧  
              AccountList[Tx→ DestAccount]→ PennyJar | P = p) then 
                Reply→ (State ←AccountList[Tx→ SenderAccount]→ State ←PRECOMMIT), σ 
←σ                  
                 (Tx, NodeAccount→ Ks) 
 
         case SETTLETX do 
            if AccountList[Tx→ DestAccount]→ State ≠ PREABORT ∧ Tx→ TxNumber = 
#Chain  
              ∧ (∀ v ∈ Message→ Verifications) ∃ NodeList[v→ NodeAccount] | Σ(v→ Tx, v→ σ,  
              NodeList[v→ NodeAccount]→ Kp)= ⊤ ∧ ∀ w ∈ Message→ Verifications w→ Tx = 
v→  
              Tx) ∧ #{Messages→ Verifications} > 2(Nf – Ni)/3 then 
                AccountList[Tx→ DestAccount]→ PennyJar ←{AccountList[Tx→ DestAccount]→  
                 PennyJar | ∀ p ∈ AccountList[Tx→ DestAccount]→ PennyJar ∉ Tx→ Pennies} 
                AccountList[Tx→ DestAccount]→ Chain⌢SHA(AccountList[Tx→ DestAccount]→  
                 Chain, Tx) 
                AccountList[Tx→ DestAccount]→ (Balance ←AccountList[Tx→ DestAccount]→  

                 Balance + ∑  
|𝑇𝑥→𝑃𝑒𝑛𝑛𝑖𝑒𝑠|
𝑡=0  Tx→Pennies[i]→ Amount, Accountlist[Tx→ 

DestAccount]→  
                 TxNumber ←Tx→ TxNumber + #{Tx→ Pennies}) 
 
         case REQUESTPJ do 
            Reply→ PennyJar ←AccountList[DestAccount]→ PennyJar 
      REPLY(Reply) 
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